Koefesien diterminasi dengan simbol r2 merupakan proporsi variabilitas dalam suatu data yang dihitung didasarkan pada model statistik. Definisi berikutnya menyebutkan bahwa r2 merupakan rasio variabilitas nilai-nilai yang dibuat model dengan variabilitas nilai data asli. Secara umum r2 digunakan sebagai informasi mengenai kecocokan suatu model. Dalam regresi r2 ini dijadikan sebagai pengukuran seberapa baik garis regresi mendekati nilai data asli yang dibuat model. Jika r2 sama dengan 1, maka angka tersebut menunjukkan garis regresi cocok dengan data secara sempurna.
Multiple R (R majemuk) adalah suatu ukuran untuk mengukur tingkat (keeratan) hubungan linear antara variabel terikat dengan seluruh variabel bebas secara bersama-sama. Pada kasus dua variabel (satu variabel terikat dan satu variabel bebas), besaran r (biasa dituliskan dengan huruf kecil untuk dua variabel) dapat bernilai positif maupun negatif (antara -1 – 1), tetapi untuk lebih dari dua variabel, besaran R selalu bernilai positif (antara 0 – 1). Nilai R yang lebih besar (+ atau -) menunjukkan hubungan yang lebih kuat.
R Square (R2) sering disebut dengan koefisien determinasi, adalah mengukur kebaikan suai (goodness of fit) dari persamaan regresi; yaitu memberikan proporsi atau persentase variasi total dalam variabel terikat yang dijelaskan oleh variabel bebas. Nilai R2 terletak antara 0 – 1, dan kecocokan model dikatakan lebih baik kalau R2 semakin mendekati 1. (uraian lebih lanjut mengenai R2 lihat pembahasan di bawah)
Adjusted R Square. Suatu sifat penting R2 adalah nilainya merupakan fungsi yang tidak pernah menurun dari banyaknya variabel bebas yang ada dalam model. Oleh karenanya, untuk membandingkan dua R2 dari dua model, orang harus memperhitungkan banyaknya variabel bebas yang ada dalam model. Ini dapat dilakukan dengan menggunakan “adjusted R square”. Istilah penyesuaian berarti nilai R2 sudah disesuaikan dengan banyaknya variabel (derajat bebas) dalam model. Memang, R2 yang disesuaikan ini juga akan meningkat bersamaan meningkatnya jumlah variabel, tetapi peningkatannya relatif kecil. Seringkali juga disarankan, jika variabel bebas lebih dari dua, sebaiknya menggunakan adjusted R square.
No comments:
Post a Comment